
Intro to BridgeStan

Brian Ward
February 16th, 2024

Who, Why, What, Why (again), and How



2

Who

Who are we?



3

Who

Myself Bob Carpenter Edward Roualdes

Software Engineer at Flatiron 
Institute

Senior Research Scientist, 
Group Leader at Flatiron 
Institute

Associate Professor at Cal 
State Chico



4

Why

Why we needed 
BridgeStan



5

Why

A lot of research is being 
done on statistical 
inference

MEADS, ChEES, DRHMC, Pathfinder, …

Edward wanted to actually try them all out, on 
models he cared about, written in Stan



6

Why

Aside: Stan models, from 
the POV of a computer 
scientist

It’s just a C++ class



7

Why

Aside: Stan models, from 
the POV of a computer 
scientist

It’s just a C++ class



8

Why



9

Why

Existing tools were lacking

Needed some way to hook into the Stan model class itself

- RStan has some support, but Edward did not use R

- PyStan had dropped support for this in its update to 3.0

- Writing all these algorithms natively in C++ was a non-starter

A lot of the Stan team (myself included) had assumed anything that did 

this needed to be at least as complicated as RStan, or be slow.

Edward decided to just write some code.



10

Why

The first working version of BridgeStan fit in about 
100 lines of C++ and 50 lines of Julia.

It exposed exactly the one function Edward needed to 
write his algorithms in Julia: a way to calculate the log 
density of a set of parameters and the gradient with 
respect to those.

He was able to do this because he combined a few 
simple tricks the rest of us had overlooked
(More on this in the “How” section)



11

What

What is BridgeStan?



12

What

BridgeStan is a library exposing the details of 
any Stan model …

From Edward’s original idea grew a package which can give you

- Log density calculations, gradients, Hessians

- Constraining and unconstraining variable transforms

- Access to generated quantities

- Variable names and model metadata

for any Stan model.



13

What

… in a language you actually use

And it will give you them in Julia, Python, R, Rust, and anything else* that 

can call C functions. 

* Some assembly required



14

What

BridgeStan plays nice

- Exceptions in Stan turn into to proper errors in the higher language.

- Print statements in Stan end up where you would expect.

- Opt-in thread safety for multithreaded calls to all functions

- Installation and build automated in each language

- Good documentation, examples, and testing

- As few copies and as little overhead as possible



15

What

Showcase

http://tinyurl.com/5esj5txr

http://tinyurl.com/5esj5txr


16

Why (Again)

Why you might use 
BridgeStan



17

Why (Again)

Maybe you’re like us

If you are researching algorithms, BridgeStan lets you write them in a 

language you know, while

- Giving you access to fast, reliable automatic differentiation

- Allowing you to test a variety of existing models quickly

- Enabling comparisons against state-of-the-art algorithms and known 

posteriors



18

Why (Again)

Or maybe you’re doing something we never 
anticipated

BridgeStan also presents a new opportunity for software to use Stan but 

live outside the Stan C++ bubble.

It has already been used for:

- Plugging Stan into a new NUTS sampler in Rust by the PyMC team

- Using Stan in a distributed sampling package in Julia 

- More things showing up in our inboxes monthly



19

How

How BridgeStan works



20

How

A C Interface

The key thing that makes BridgeStan different from tools like RStan is 

that it avoids needing to communicate between Stan and the higher-level 

language via the C++ binary interface.

Instead, everything is done at a lower level using C’s binary interface. 

This makes a bit more work for the programmer, but gains:

- Portability (Windows worked the first time we tried it)

- Language-agnostic code

- Simplicity



21

How

What actually happens under the hood

A Stan model fed into BridgeStan gets wrapped with a simple C API and 

compiled into a shared library (aka a dynamic link library or DLL). 

Most languages supply a way to load and call C-like functions in shared 

libraries. As a result, we avoid needing to write C/C++ that interfaces with 

the Julia API, or Python API, or …

We treat these libraries just like a system library (zlib, etc).

Finally, we provide wrappers around these often low-level tools to open 

BridgeStan’s outputs.



Thank you.
bward@flatironinstitute.org

https://github.com/roualdes/bridgestan

Roualdes et al., (2023). BridgeStan: Efficient in-memory access to the 
methods of a Stan model. Journal of Open Source Software, 8(87), 5236, 
https://doi.org/10.21105/joss.05236




