
Hi all
For my senior thesis I’ve been working with Joseph Tassarotti and Jean-Baptiste 
Tristan to create a verified parser for the language Stan

1



Now, I think the most interesting thing about this project was that it required 
understanding two kinds of programming language that you may not encounter in 
undergraduate studies.
The first is probabilistic programming languages, of which our target language Stan is 
one. These are very different from your standard language – the program is not a list 
of instructions, but a description of a probability density function. When you compile 
and run these programs, they can perform inference and provide samples from that 
distribution. 

The other kind is known as a proof assistant. This is where the ‘validated’ part of my 
title comes in. These are languages, usually functional ones, that can also contain 
mathematical proofs about the code. These proofs can be checked by the computer, 
and the computer can aid in their proving alongside the programmer. The proper use 
of these languages means you actually don’t need to do any testing – you have 
proved, in a truly strict sense, that the program does what you said

2



Now, you may have the same instinct I did when I first heard about these proof 
assistants. How does that work? Is it really possible?

The short answer is yes. Here is an example of a proof of the same thing in Coq, the 
language my thesis used, and in a more standard English proof.

You don’t need to understand everything happening on the screen here, but you 
should take away this: computers can do proofs, but they specialize in simple proofs. 
And as it turns out, that is good enough for a lot of things. Proofs about a program 
tend to be intellectually pretty simple, but take a ton of tiny little steps. These can be 
automated away using the more advanced features of the proof assistants.

3



If I’ve been able to convince you that you really can prove these things, the next 
question may be “why, then”? 

This is where the nature of Stan can be more important. My thesis is the first step in a 
larger project to verify an entire compiler for Stan. And while this compiler itself is 
deterministic, the program it outputs does simulate randomness, and proving that it 
is correct can be difficult. There have been documented examples of the existing Stan 
compiler outputting subtly biased numbers, and this can take a long time to notice. 
Proving that the compiler’s transformations were correct, we believe, is an 
worthwhile endeavor to combat this potential with complete confidence. 

4



All of that (hopefully interesting) background on programming languages aside, we 
can start to discuss what my thesis actually did.

Parsing is the first step a compiler does. This takes in the input as a sequence of 
characters and verifies its structure. If it accepts the code, meaning it was well-
formed, it will build a tree called an Abstract Syntax Tree that is used later in the 
compiler. If it rejects the input, a good parser should tell you why – this is where the 
oft-maligned syntax error comes from. 

There are a lot of extra details in the theory of parsing, especially wrapped up the the
phrase “builds a syntax tree”. In particular, there is something known as ambiguity, 
which can lead to a situation like in the picture above – which of these two trees do 
we want the parser to output? This basic idea ended up being essential to my work 
on the parser.

5



So let’s get down to it then. We used a tool known as a parser generator, which takes 
in a specification of a grammar for the language you want to parse, and outputs code 
that implements that parser. Specifically we used Menhir, which can output code for 
Ocaml or Coq

A lot of this was just about reading the Stan specification and using the existing 
compiler as a template, but there were some important details that needed to be 
cleared up. The specification was incomplete, and the existing compiler resolved 
ambiguity (from the last slide) using annotations to tell the parser what to do. The 
Coq mode of Menhir, so I had to re-write a large section of the grammar myself.

Then, all the code the parser needs to work needs to be written in Coq. This also 
involves describing the type structure of the language to Menhir.

After that, Menhir handles the rest. You can be sure that the parser it generates only 
recognizes things in the language, recognizes all of them, and doesn’t produce any 
internal errors while parsing. They have the proofs to show it.

Finally, there is some work to make this actually usable by the rest of the ecosystem. 

6



The other thing I mentioned that parsers are responsible for is syntax errors. This is 
an incredibly useful part of parsing, and we decided it was a necessary part of my 
project. 
But there was a problem: Menhir doesn’t have any good options for doing this in the 
Coq mode.

So, we decided I should add one. We thought of a couple ways to do this.

7



First, we could do what’s been done before. CompCert is a verified compiler, written 
in Coq, for the C language. It is actually the reason Menhir can output Coq code to 
begin with. They run two parsers, one of which is not verified and handles the errors, 
and the other which actually creates the tree. There are some oddities in C that also 
make this a good idea for them, but we decided against it. It would have been really 
easy, but it struck us as inelegant.

The second thing we considered was changing the Coq parser that Menhir creates to 
use that same incremental mode which allows the unverified parsers to do error 
messaging so well. This had two large problems: first, the size of the change would be 
considerable, taking a lot of effort and breaking backwards compatibility 
considerably.  Secondly, there is a more subtle problem with this feature. 

8



This change would have the parser be run step by step, and some other piece of code 
would be in charge of actually running each of those steps. This is counter to the idea 
of verification, because you’d have to trust the code running the parser to do the 
right things. The proofs about the parser would be mostly meaningless.

9



So, we came to the third option. We can modify the return type of the generated 
parsers to include some crucial information about the state of the parser and the 
piece of the input that caused this error. 
We chose to pursue this.

10



So, understanding the options and having made our choice, I did it. And when we 
reached out to the developers of Menhir, they included it in the tool.

There was just one thing left to do: Now that Menhir’s Coq mode supported error 
messages, I needed to write them. Using the existing stan compiler as a reference, I 
wrote about a 160 error messages, for just over two hundred possible syntax 
problems, with some overlap between them. 

Putting all that together, we got what we wanted

11



A verified parser that also gives meaningful information to the programmer. This 
parser will be used as the first part of the larger verified Stan compiler project.

12



13


